Author(s): Nimse Saurabh Rajendra

Email(s): Email ID Not Available

DOI: 10.52711/2321-5836.2026.00013   

Address: Nimse Saurabh Rajendra
Pravara Rural College of Pharmacy, Pravaranagar, Loni, Tal - Rahata, Dis - Ahmednagar, India, 413736.
*Corresponding Author

Published In:   Volume - 18,      Issue - 1,     Year - 2026


ABSTRACT:
Now a day people use various types of product such as, room freshners and disinfectants, so aim to minimize the chemicals or disinfectant to cleanse the environment, effort were made to device an herbal dhoop using kapoor tulasi, Bhimsen camphor, cow dung, cow milk, marigold flower, cow ghee and so many things added in dhoop which help to purify air. It’s also show the mosquito repellent property. Thus, it was concluded that herbal dhoop can be comfortable used for fumigation of hospital wards, microbiological labs as well as homes. Hence it is safe and eco-friendly in use.


Cite this article:
Nimse Saurabh Rajendra. Nisarga Rakshak: Herbal Batti. Research Journal of Pharmacology and Pharmacodynamics. 2026;18(1):103-6. doi: 10.52711/2321-5836.2026.00013

Cite(Electronic):
Nimse Saurabh Rajendra. Nisarga Rakshak: Herbal Batti. Research Journal of Pharmacology and Pharmacodynamics. 2026;18(1):103-6. doi: 10.52711/2321-5836.2026.00013   Available on: https://www.rjppd.org/AbstractView.aspx?PID=2026-18-1-13


REFERENCE:
1.    Craig ME, Hattersley A, Donaghue KC. Definition, epidemiology and classification of diabetes in children and adolescents. Pediatr diabetes. 2009 Sep 1;10(Suppl 12):3-12
2.    Caro-Ordieres T, Marín-Royo G, Opazo-Ríos L, Jiménez-Castilla L, Moreno JA, Gómez-Guerrero C, Egido J. The coming age of flavonoids in the treatment of diabetic complications. Journal of clinical medicine. 2020 Jan 27;9(2):346.
3.    Faselis C, Katsimardou A, Imprialos K, Deligkaris P, Kallistratos M, Dimitriadis K. Microvascular complications of type 2 diabetes mellitus. Current vascular pharmacology. 2020 Mar 1;18(2):117-24
4.    Selby NM, Taal MW. An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines. Diabetes, Obesity and Metabolism. 2020 Apr; 22:3-15
5.    Zimmet P. Globalization, coca‐colonization and the chronic disease epidemic: can the Doomsday scenario be averted? Journal of internal medicine. 2001 Feb;249(S741):17-26.
6.    Amos AF, McCarty DJ, Zimmet P. The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabetic medicine. 1997 Dec;14(S5): S7-85
7.    King H, Aubert RE, Herman WH. Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes care. 1998 Sep 1;21(9):1414-31.
8.    Shi J, Wu J, Zhou X, Zeng L, Huang X, Wang W. Kaempferol: A Dietary Flavonoid with Potential Protective Effects Against Kidney Diseases. Molecular Nutrition & Food Research. 2025 Aug 20: e70211
9.    Giglio RV, Patti AM, Rizvi AA, Stoian AP, Ciaccio M, Papanas N, Janez A, Sonmez A, Banach M, Sahebkar A, Rizzo M. Advances in the pharmacological management of diabetic nephropathy: a 2022 international update. Biomedicines. 2023 Jan 20;11(2):291.
10.    Kawanami D, Matoba K, Takeda Y, Nagai Y, Akamine T, Yokota T, Sango K, Utsunomiya K. SGLT2 inhibitors as a therapeutic option for diabetic nephropathy. International journal of molecular sciences. 2017 May 18;18(5):1083.
11.    Papademetriou V, Alataki S, Stavropoulos K, Papadopoulos C, Bakogiannis K, Tsioufis K. Pharmacological management of diabetic nephropathy. Current Vascular Pharmacology. 2020 Mar 1;18(2):139-47.
12.    Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. New England Journal of Medicine. 1993 Nov 11;329(20):1456-62.
13.    Forbes JM, Cooper ME, Oldfield MD, Thomas MC. Role of advanced glycation end products in diabetic nephropathy. Journal of the American Society of Nephrology. 2003 Aug 1;14(suppl_3): S254-8.
14.    Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. The Korean journal of physiology & pharmacology: official journal of the Korean Physiological Society and the Korean Society of Pharmacology. 2014 Feb 13;18(1):1.
15.    Fonseca-Correa JI, Correa-Rotter R. Sodium-glucose cotransporter 2 inhibitors mechanisms of action: a review. Frontiers in Medicine. 2021 Dec 20; 8:777861.
16.    Greco EV, Russo G, Giandalia A, Viazzi F, Pontremoli R, De Cosmo S. GLP-1 receptor agonists and kidney protection. Medicina. 2019 May 31;55(6):233.
17.    Hakim FA, Pflueger A. Role of oxidative stress in diabetic kidney disease. Medical science monitor: international medical journal of experimental and clinical research. 2010 Feb 1;16(2):RA37-48.
18.    Lindblom R, Higgins G, Coughlan M, de Haan JB. Targeting mitochondria and reactive oxygen species-driven pathogenesis in diabetic nephropathy. The review of diabetic studies: RDS. 2015 Aug 10;12(1-2):134.
19.    Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocrine reviews. 2002 Oct 1;23(5):599-622.
20.    Barros J, da Silva Santos R, da Silva Reis AA. Implication of the MAPK signalling pathway in the pathogenesis of diabetic nephropathy. Diabetes. 2019 Nov;7(1):107-14.
21.    Rane MJ, Song YE, Jin S, Barati MT, Wu R, Kausar H, Tan Y, Wang Y, Zhou G, Klein JB, Li X. Interplay between Akt and p38 MAPK pathways in the regulation of renal tubular cell apoptosis associated with diabetic nephropathy. American Journal of Physiology-Renal Physiology. 2010 Jan;298(1): F49-61.
22.    Toyoda M, Suzuki D, Honma M, Uehara G, Sakai T, Umezono T, Sakai H. High expression of PKC-MAPK pathway mRNAs correlates with glomerular lesions in human diabetic nephropathy. Kidney international. 2004 Sep 1;66(3):1107-14.
23.    [Fonseca-Correa JI, Correa-Rotter R. Sodium-glucose cotransporter 2 inhibitors mechanisms of action: a review. Frontiers in Medicine. 2021 Dec 20; 8:777861.    
24.    Hsia DS, Grove O, Cefalu WT. An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus. Current Opinion in Endocrinology, Diabetes and Obesity. 2017 Feb 1;24(1):73-9.
25.    Heerspink HJ, Perkins BA, Fitchett DH, Husain M, Cherney DZ. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation. 2016 Sep 6;134(10):752-72
26.    Fujita H, Morii T, Fujishima H, Sato T, Shimizu T, Hosoba M, Tsukiyama K, Narita T, Takahashi T, Drucker DJ, Seino Y. The protective roles of GLP-1R signaling in diabetic nephropathy: possible mechanism and therapeutic potential. Kidney international. 2014 Mar 1;85(3):579-89.  
27.    Granata A, Maccarrone R, Anzaldi M, Leonardi G, Pesce F, Amico F, Gesualdo L, Corrao S. GLP-1 receptor agonists and renal outcomes in patients with diabetes mellitus type 2 and diabetic kidney disease: state of the art. Clinical Kidney Journal. 2022 Sep;15(9):1657-65.  
28.    Skov J. Effects of GLP-1 in the kidney. Reviews in Endocrine and Metabolic Disorders. 2014 Sep;15(3):197-207
29.    Górriz JL, Soler MJ, Navarro-González JF, García-Carro C, Puchades MJ, D’Marco L, Martínez Castelao A, Fernández-Fernández B, Ortiz A, Górriz-Zambrano C, Navarro-Pérez J. GLP-1 receptor agonists and diabetic kidney disease: a call of attention to nephrologists. Journal of clinical medicine. 2020 Mar 30;9(4):947.
30.    Shi S, Chen X, Yu W, Ke X, Ma T. Protective effect of GLP-1 analog liraglutide on podocytes in mice with diabetic nephropathy. Endocrine Connections. 2023 Oct 1;12(10).
31.    Cushnie TT, Lamb AJ. Antimicrobial activity of flavonoids. International journal of antimicrobial agents. 2005 Nov 1;26(5):343-56.
32.    Kawser Hossain M, Abdal Dayem A, Han J, Yin Y, Kim K, Kumar Saha S, Yang GM, Choi HY, Cho SG. Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. International journal of molecular sciences. 2016 Apr 15;17(4):569.
33.    3Salma B, Janhavi P, Muthaiah S, Veeresh P, Santhepete Nanjundaiah M, Divyashree S, Serva Peddha M. Ameliorative efficacy of the Cassia auriculata root against high-fat-diet+ STZ-induced type-2 diabetes in C57BL/6 mice. ACS omega. 2020 Dec 18;6(1):492-504.
34.    Pandey MM, Rastogi S, Rawat AK. Indian traditional ayurvedic system of medicine and nutritional supplementation. Evidence‐Based Complementary and Alternative Medicine. 2013;2013(1):376327
35.    Pari L, Latha M. Effect of Cassia auriculata flowers on blood sugar levels, serum and tissue lipids in streptozotocin diabetic rats. Singapore Med J. 2002 Dec 1;43(12):617-21.
36.    Gupta S, Sharma SB, Bansal SK, Prabhu KM. Antihyperglycemic and hypolipidemic activity of aqueous extract of Cassia auriculata L. leaves in experimental diabetes. Journal of Ethnopharmacology. 2009 Jun 25;123(3):499-503.
37.    Latha M, Pari L. Antihyperglycaemic effect of Cassia auriculata in experimental diabetes and its effects on key metabolic enzymes involved in carbohydrate metabolism. Clinical and experimental pharmacology and physiology. 2003 Jan;30(1‐2):38-43.
38.    Gomez-Zorita S, Lasa A, Abendaño N, Fernandez-Quintela A, Mosqueda-Solís A, Garcia-Sobreviela MP, Arbonés-Mainar JM, Portillo MP. Phenolic compounds apigenin, hesperidin and kaempferol reduce in vitro lipid accumulation in human adipocytes. Journal of translational medicine. 2017 Nov 21;15(1):237.
39.    Luo W, Chen X, Ye L, Chen X, Jia W, Zhao Y, Samorodov AV, Zhang Y, Hu X, Zhuang F, Qian J. Kaempferol attenuates streptozotocin-induced diabetic nephropathy by downregulating TRAF6 expression: The role of TRAF6 in diabetic nephropathy. Journal of Ethnopharmacology. 2021 Mar 25; 268:113553.
40.    Luo W, Chen X, Ye L, Chen X, Jia W, Zhao Y, Samorodov AV, Zhang Y, Hu X, Zhuang F, Qian J. Kaempferol attenuates streptozotocin-induced diabetic nephropathy by downregulating TRAF6 expression: The role of TRAF6 in diabetic nephropathy. Journal of Ethnopharmacology. 2021 Mar 25; 268:113553.
41.    Hu ZQ, Ding HM, Zhou L, Du YQ, Ye M, Shen AL, Yin G. Study on The Mechanism of Kaempferol Against Diabetic Nephropathy Via Nlrp3/Caspase-1 Signaling Pathway. Acta Poloniae Pharmaceutica. 2024 May 1;81(3).
42.    Alshehri AS. Kaempferol attenuates diabetic nephropathy in streptozotocin-induced diabetic rats by a hypoglycaemic effect and concomitant activation of the Nrf-2/Ho-1/antioxidants axis. Archives of physiology and biochemistry. 2023 Jul 4;129(4):984-97.
43.    Sheng H, Zhang D, Zhang J, Zhang Y, Lu Z, Mao W, Liu X, Zhang L. Kaempferol attenuated diabetic nephropathy by reducing apoptosis and promoting autophagy through AMPK/mTOR pathways. Frontiers in Medicine. 2022 Nov 30; 9:986825.
44.    Sharma D, Gondaliya P, Tiwari V, Gorain M, Kalia K. Kaempferol attenuates diabetic nephropathy by inhibiting RhoA/Rho-kinase mediated inflammatory signalling. Biomed Pharmacother. 2019; 109:1610-1619. .2018.10.195.
45.    Sharma D, Tekade RK, Kalia K. Kaempferol in ameliorating diabetes-induced fibrosis and renal damage: an in vitro and in vivo study in diabetic nephropathy mice model. Phytomedicine. 2020 Sep 1; 76:153235.45
46.    Salehi B, Machin L, Monzote L, Sharifi-Rad J, Ezzat SM, Salem MA, Merghany RM, El Mahdy NM, Kılıç CS, Sytar O, Sharifi-Rad M. Therapeutic potential of quercetin: new insights and perspectives for human health. ACS omega. 2020 May 14;5(20):11849-72.
47.    Feng Q, Yang Y, Qiao Y, Zheng Y, Yu X, Liu F, Wang H, Zheng B, Pan S, Ren K, Liu D. Quercetin ameliorates diabetic kidney injury by inhibiting ferroptosis via activating Nrf2/HO-1 signaling pathway. The American Journal of Chinese Medicine. 2023 Apr 10;51(04):997-1018.
48.    Xu D, Hu MJ, Wang YQ, Cui YL. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules. 2019 Mar 21;24(6):1123.
49.    Elbe H, Vardi Nİ, Esrefoglu MU, Ates B, Yologlu S, Taskapan C. Amelioration of streptozotocin-induced diabetic nephropathy by melatonin, quercetin, and resveratrol in rats. Human & experimental toxicology. 2015 Jan;34(1):100-13.
50.    Iskender H, Dokumacioglu E, Sen TM, Ince I, Kanbay Y, Saral S. The effect of hesperidin and quercetin on oxidative stress, NF-κB and SIRT1 levels in a STZ-induced experimental diabetes model. Biomedicine & Pharmacotherapy. 2017 Jun 1; 90:500-8
51.    Du L, Li C, Qian X, Chen Y, Wang L, Yang H, Li X, Li Y, Yin X, Lu Q. Quercetin inhibited mesangial cell proliferation of early diabetic nephropathy through the Hippo pathway. Pharmacol Res. 2019; 146:104320. doi: 10.1016/j.phrs.2019.104320.
52.    Gomes IBS, Porto ML, Santos MCLFS, Campagnaro BP, Pereira TMC, Meyrelles SS, Vasquez EC. Renoprotective, anti-oxidative and anti-apoptotic effects of oral low-dose quercetin in the C57BL/6J model of diabetic nephropathy. Lipids Health Dis. 2014; 13:184. doi:10.1186/1476-511X-13-184.
53.    Tang L, Li K, Zhang Y, Li H, Li A, Xu Y, et al. Quercetin liposomes ameliorate streptozotocin-induced diabetic nephropathy in diabetic rats. Sci Rep. 2020; 10:2440. doi:10.1038/s41598-020-59411-7.
54.    Wang C, Pan Y, Zhang QY, Wang FM, Kong LD. Quercetin and Allopurinol Ameliorate Kidney Injury in STZ-Treated Rats with Regulation of Renal NLRP3 Inflammasome Activation and Lipid Accumulation. PLoS ONE. 2012;7(6):e38285. doi: 10.1371/journal.pone.0038285
55.    Tong F, Liu S, Yan B, Li X, Ruan S, Yang S. Quercetin nanoparticle complex attenuated diabetic nephropathy via regulating the expression level of ICAM-1 on endothelium. International Journal of Nanomedicine. 2017 Oct 24:7799-813.
56.    Jang S, Kelley KW, Johnson RW. Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1. Proceedings of the National Academy of Sciences. 2008 May 27;105(21):7534-9.
57.    Hu Q, Qu C, Xiao X, Zhang W, Jiang Y, Wu Z, Song D, Peng X, Ma X, Zhao Y. Flavonoids on diabetic nephropathy: advances and therapeutic opportunities. Chinese medicine. 2021 Aug 7;16(1):74.
58.    Xiong C, Wu Q, Fang M, Li H, Chen B, Chi T. Protective effects of luteolin on nephrotoxicity induced by long-term hyperglycaemia in rats. Journal of International Medical Research. 2020 Apr;48(4):0300060520903642.
59.    Zhang M, He L, Liu J, Zhou L. Luteolin attenuates diabetic nephropathy through suppressing inflammatory response and oxidative stress by inhibiting STAT3 pathway. Experimental and Clinical Endocrinology & Diabetes. 2021 Oct;129(10):729-39.
60.    Yu Q, Zhang M, Qian L, Wen D, Wu G. Luteolin attenuates high glucose-induced podocyte injury via suppressing NLRP3 inflammasome pathway. Life Sciences. 2019 May 15; 225:1-7.
61.    Wang GG, Lu XH, Li W, Zhao X, Zhang C. Protective effects of luteolin on diabetic nephropathy in STZ‐induced diabetic rats. Evidence‐Based Complementary and Alternative Medicine. 2011;2011(1):323171
62.    Khaled R. Biological activities of isorhamnetin: A review. Plantae Scientia. 2020 Sep 15;3(5):78-81.
63.    Li J, Yuan H, Zhao Z, Li L, Li X, Zhu L, Wang X, Sun P, Xiao Y. The mitigative effect of isorhamnetin against type 2 diabetes via gut microbiota regulation in mice. Frontiers in nutrition. 2022 Dec 22; 9:1070908.
64.    Qiu S, Sun G, Zhang Y, Li X, Wang R. Involvement of the NF-κB signaling pathway in the renoprotective effects of isorhamnetin in a type 2 diabetic rat model. Biomedical reports. 2016 May 1;4(5):628-34.   
65.    Matboli M, Saad M, Hasanin AH, Saleh LA, Baher W, Bekhet MM, Eissa S. New insight into the role of isorhamnetin as a regulator of insulin signaling pathway in type 2 diabetes mellitus rat model: Molecular and computational approach. Biomedicine & Pharmacotherapy. 2021 Mar 1; 135:111176. 
66.    Jamali-Raeufy N, Baluchnejadmojarad T, Roghani M. Isorhamnetin exerts neuroprotective effects in STZ-induced diabetic rats via attenuation of oxidative stress, inflammation and apoptosis. Journal of Chemical Neuroanatomy. 2019 Dec 1; 102:101709.                 
67.    Salehi B, Venditti A, Sharifi-Rad M, Kręgiel D, Sharifi-Rad J, Durazzo A, Lucarini M, Santini A, Souto EB, Novellino E, Antolak H. The therapeutic potential of apigenin. International journal of molecular sciences. 2019 Mar 15;20(6):1305.
68.    Ali F, Rahul, Naz F, Jyoti S, Siddique YH. Health functionality of apigenin: A review. International Journal of Food Properties. 2017 Jun 3;20(6):1197-238.
69.    Hou Y, Zhang Y, Lin S, Yu Y, Yang L, Li L, Wang W. Protective mechanism of apigenin in diabetic nephropathy is related to its regulation of miR-423-5P-USF2 axis. American Journal of Translational Research. 2021 Apr 15;13(4):2006. 
70.    Barky A, Ezz A, Mohammed T. The Potential role of apigenin in diabetes mellitus. Int. J. Clin. Case Rep. Rev. 2020;3(1):32.
71.    Aldayel TS. Apigenin attenuates high-fat diet-induced nephropathy in rats by hypoglycemic and hypolipidemic effects, and concomitant activation of the Nrf2/antioxidant axis. Journal of Functional Foods. 2022 Dec 1; 99:105295.
72.    Zhang J, Zhao X, Zhu H, Wang J, Ma J, Gu M. Apigenin protects against renal tubular epithelial cell injury and oxidative stress by high glucose via regulation of NF-E2-related factor 2 (Nrf2) pathway. Medical science monitor: international medical journal of experimental and clinical research. 2019 Jul 16; 25:5280.
73.    Li P, Bukhari SN, Khan T, Chitti R, Bevoor DB, Hiremath AR, SreeHarsha N, Singh Y, Gubbiyappa KS. RETRACTED ARTICLE: Apigenin-Loaded Solid Lipid Nanoparticle Attenuates Diabetic Nephropathy Induced by Streptozotocin Nicotinamide Through Nrf2/HO-1/NF-kB Signalling Pathway. International journal of nanomedicine. 2020 Nov 19:9115-24.
74.    Malik S, Suchal K, Khan SI, Bhatia J, Kishore K, Dinda AK, Arya DS. Api-genin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-ĸB-TNF-α and TGF-β1-MAPK-fibronectin pathways. Am J Physiol Ren Physiol. 2017;313: F414–22.
75.    Arya DV, Alik SM, Suchal K, Bhatia J. A18239 Apigenin ameliorates streptozotocin induced diabetic nephropathy in rats by modulation of oxidative stress, apoptosis and inflammation through MAPK pathway. Journal of Hypertension. 2018 Oct 1;36: e63.

Recomonded Articles:

Author(s): Amit A. Shimpi, Arvind S. Pawara

DOI: 10.52711/2321-5836.2022.00024         Access: Open Access Read More

Author(s): Sangita P. Shirsat, Kaveri P. Tambe, Gayatri D. Patil, Ganesh G. Dhakad

DOI: 10.52711/2321-5836.2022.00016         Access: Open Access Read More

Author(s): Oloninefa, S. D, Aisoni, J. E, Areo, A. J, Akomolafe, D. O, Abalaka, M. E, Alli, A. I, Adewumi, A. A

DOI: 10.52711/2321-5836.2022.00035         Access: Open Access Read More

Author(s): Sanat Sharma, Tabish Ahmed, Syed Sajid Ali, Raj Sharma, Devender Sachdev.

DOI: Not Available         Access: Open Access Read More

Author(s): Venkateswaramurthy N, Ashli Raj V, Nisharani SS, Limna AL, Chandini S, Sambathkumar R

DOI: 10.52711/2321-5836.2021.00017         Access: Open Access Read More

Author(s): Nimse Saurabh Rajendra

DOI: 10.52711/2321-5836.2026.00013         Access: Closed Access Read More

Research Journal of Pharmacology and Pharmacodynamics (RJPPD) is an international, peer-reviewed journal....... Read more >>>

RNI: Not Available                     
DOI: 10.5958 2321-5836 

Journal Policies & Information




Recent Articles




Tags