Author(s): Ponnala Namitha, Jorige ArchanaP

Email(s): ponnalanamitha1602@gmail.com

DOI: 10.52711/2321-5836.2026.00002   

Address: Ponnala Namitha*, Jorige ArchanaP
Department of Pharmacology, RBVRR Women’s College of Pharmacy, Affiliated to Osmania University, Barkatpura, 3-4-343, Hyderabad, 500027, India.
*Corresponding Author

Published In:   Volume - 18,      Issue - 1,     Year - 2026


ABSTRACT:
The neurological condition known as epilepsy affects both adults and children, and little is known about many facets of this illness. In addition to examining Zebrafish's potential as an epileptic research model, this review compares the numerous chemicals used to cause seizures in zebrafish models by evaluating gene expressions and behavioral patterns as indicators of seizure incidence. Their brains are rather simple, but compared to traditional rodent models, researchers can still gather a lot of data in a shorter length of time and for less money. With less ethical issues, this is especially helpful for screening a large number of potential anti-seizure medications. Chemical inducers are becoming essential instruments for carefully adjusting brain activity in carefully monitored studies. Pilocarpine, picrotoxin (PTX), kainic acid (KA), pentylenetetrazole (PTZ), and other compounds are among the chosen chemical inducers. They primarily work by changing neurotransmitter receptors at inhibitory or excitatory synapses, including GABA and glutamate, which aids in epileptogenesis. To duplicate different kinds of seizures, including temporal lobe epilepsy and status epilepticus, and to investigate the effects of chemical inducers on zebrafish development, a number of parameters can be changed. Despite the abundance of substitutes, many chemical inducers are still neglected in zebrafish research. It becomes essential to track gene expression indicators like c-fos, which indicates neural activity, in order to guarantee the effective induction of models. A grading system is also used to determine the effectiveness of treatment and assess the severity of seizures. Clarifying seizure pathways requires the use of chemically produced zebrafish seizure models, which greatly enhance neurological research.


Cite this article:
Ponnala Namitha, Jorige ArchanaP. Modelling Chemically-induced Seizures in Zebrafish: A Holistic Review of Current Research Applications. Research Journal of Pharmacology and Pharmacodynamics. 2026;18(1):7-4. doi: 10.52711/2321-5836.2026.00002

Cite(Electronic):
Ponnala Namitha, Jorige ArchanaP. Modelling Chemically-induced Seizures in Zebrafish: A Holistic Review of Current Research Applications. Research Journal of Pharmacology and Pharmacodynamics. 2026;18(1):7-4. doi: 10.52711/2321-5836.2026.00002   Available on: https://www.rjppd.org/AbstractView.aspx?PID=2026-18-1-2


REFERENCES:
1. Giourou E, Stavropoulou-Deli A, Giannakopoulou A, Kostopoulos GK, Koutroumanidis M. Introduction to Epilepsy   and Related Brain Disorders. In: Voros N, Antonopoulos C, editors. Cyberphysical Systems for Epilepsy and Related Brain Disorders. Cham: Springer; 2015.
2. Subramanian S. Zebrafish as a model organism - can a fish mimic human? J Basic Clin Physiol Pharmacol. 2021; 34(5): 559-75.
3. William R, Mruk K. Aquatic Freshwater Vertebrate Models of Epilepsy Pathology: Past Discoveries and Future Directions for Therapeutic Discovery. 2022.
4. D’Amora M, Galgani A, Marchese M, Tantussi F, Faraguna U, De Angelis F, et al. Zebrafish as an Innovative Tool for Epilepsy Modeling: State of the Art and Potential Future Directions. Int J Mol Sci. 2023; 24(9): 7702.
5. Dittmar F, Seyfried S, Kaever V, Seifert R. Zebrafish as model organism for cNMP research. BMC Pharmacol Toxicol. 2015; 16(1).
6. Löscher W. Preclinical assessment of pro-convulsant drug activity and its relevance for predicting adverse events in humans. Eur J Pharmacol. 2009; 610(1-3): 1-11.
7. Baraban SC, Taylor MR, Castro PA, Baier H. PTZ induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience. 2005; 131(3): 759-68.
8. Baraban SC. A zebrafish-centric approach to antiepileptic drug development. Dis Model Mech. 2021;14.
9. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995; 203: 253-310.
10. Streisinger G, Walker C, Dower N, Knauber D, Singer F. Production of clones of homozygous diploid zebra fish (Brachy danio rerio). Nature. 1981; 291: 293-296.
11. D’Amora M, Schmidt TJN, Konstantinidou S, Raffa V, De Angelis F, Tantussi F. Effects of Metal Oxide Nanoparticles in Zebrafish. Oxid Med Cell Longev. 2022; 2022: 3313016.
12. Geisler R, Köhler A, Dickmeis T, Strähle U. Archiving of zebrafish lines can reduce animal experiments in biomedical research. EMBO Rep. 2017; 18: 1-2.
13. Patton EE, Zon LI, Langenau DM. Zebrafish disease models in drug discovery: From preclinical modelling to clinical trials. Nat Rev Drug Discov. 2021; 20: 611-28.
14. Rinkwitz S, Mourrain P, Becker TS. Zebrafish: An integrative system for neurogenomics and neurosciences. Prog Neurobiol. 2011; 93: 231-43.
15. Vaz R, Hofmeister W, Lindstrand A. Zebrafish Models of Neurodevelopmental Disorders: Limitations and Benefits of Current Tools and Techniques. Int J Mol Sci. 2019; 20(5): 1296.
16. Diotel N, Lübke L, Strähle U, Rastegar S. Common and Distinct Features of Adult Neurogenesis and Regeneration in the Telencephalon of Zebrafish and Mammals. Front Neurosci. 2020; 14:568930.
17. Becker TS, Rinkwitz S. Zebrafish as a genomics model for human neurological and polygenic disorders. Dev Neurobiol. 2012; 72: 415-28.
18. Griffin A, Carpenter C, Liu J, Paterno R, Grone B, Hamling K, et al. Phenotypic analysis of catastrophic childhood epilepsy genes. Commun Biol. 2021; 4: 680.
19. Grone BP, Baraban SC. Animal models in epilepsy research: Legacies and new directions. Nat Neurosci. 2015; 18: 339-43.
20. Cho SJ, Park E, Baker A, Reid AY. Age bias in zebrafish models of epilepsy: What can we learn from old fish? Front Cell Dev Biol. 2020; 8: 573303.
21. McMenamin SK, Parichy DM. Metamorphosis in teleosts. Curr Top Dev Biol. 2013; 103:127-65.
22. Fleming A, Diekmann H, Goldsmith P. Functional Characterisation of the Maturation of the Blood-Brain Barrier in Larval Zebrafish. PLoS One. 2013; 8: e77548.
23. Oby E, Janigro D. The Blood–Brain Barrier and Epilepsy. Epilepsia. 2006; 47: 1761-74.
24. Duy PQ, Berberoglu MA, Beattie CE, Hall CW. Cellular responses to recurrent pentylenetetrazole-induced seizures in the adult zebrafish brain. Neuroscience. 2017; 349: 118-27.
25. Fleming A, Diekmann H, Goldsmith P. Functional Characterisation of the Maturation of the Blood Brain Barrier in Larval Zebrafish. PLoS One. 2013; 8: e77548.
26. Cho SJ, Park E, Baker A, Reid AY. Age bias in zebrafish models of epilepsy: What can we learn from old fish? Front Cell Dev Biol. 2020; 8: 573303.
27. Mejías-Aponte CA, Jiménez-Rivera CA, Segarra AC. Sex differences in models of temporal lobe epilepsy: Role of testosterone. Brain Res. 2002; 944: 210-18.
28. Scharfman HE, MacLusky NJ. Sex differences in the neurobiology of epilepsy: A preclinical perspective. Neurobiol Dis. 2014; 72: 180-92.
29. Ampatzis K, Dermon CR. Sex differences in adult cell proliferation within the zebrafish (Danio rerio) cerebellum. Eur J Neurosci. 2007; 25: 1030-40.
30. Ampatzis K, Dermon CR. Sexual dimorphisms in swimming behavior, cerebral metabolic activity, and adrenoceptors in adult zebrafish (Danio rerio). Behav Brain Res. 2016; 312: 385-93.
31. Wong K, Stewart A, Gilder T, Wu N, Frank K, Gaikwad S, et al. Modeling seizure-related behavioral and endocrine phenotypes in adult zebrafish. Brain Res. 2010; 1348: 209-15.
32. Braida D, Donzelli A, Martucci R, Ponzoni L, Pauletti A, Sala M. Neurohypophyseal hormones protect against pentylenetetrazole-induced seizures in zebrafish: Role of oxytocin-like and V1a-like receptor. Peptides. 2012; 37: 327-33.
33. Cho SJ, Byun D, Nam TS, Choi SY, Lee BG, Kim MK, et al. Zebrafish as an animal model in epilepsy studies with multichannel EEG recordings. Sci Rep. 2017; 7: 3099.
34. Aleshin VA, Graf AV, Artiukhov AV, Ksenofontov AL, Zavileyskiy LG, Maslova MV, et al. Pentylenetetrazole-Induced Seizures Are Increased after Kindling, Exhibiting Vitamin-Responsive Correlations to the Post-Seizures Behavior, Amino Acids Metabolism and Key Metabolic Regulators in the Rat Brain. Int J Mol Sci. 2023; 24(15): 12405.
35. Al Omairi NE, Albrakati A, Alsharif KF, Almalki AS, Alsanie W, Abd Elmageed ZY, et al. Selenium Nanoparticles with Prodigiosin Rescue Hippocampal Damage Associated with Epileptic Seizures Induced by Pentylenetetrazole in Rats. Int J Mol Sci. 2023; 24(1): 157.
36. Viswanatha GL, Shylaja H, Kishore DV, Venkataranganna M, Prasad N. Acteoside Isolated from Colebrookea oppositifolia Smith Attenuates Epilepsy in Mice Via Modulation of Gamma-Aminobutyric Acid Pathways. Neurotox Res. 2020; 38: 1010-23.
37. Dhir A. Pentylenetetrazol (PTZ) kindling model of epilepsy. Curr Protoc Neurosci. 2012; 58(1): 9-37.
38. D'Adamo MC, Catacuzzeno L, Di Giovanni G, Franciolini F, Pessia M. K+ channelepsy: progress in the neurobiology of potassium channels and epilepsy. Front Cell Neurosci. 2013; 7: 134.
39. Gawel K, Kukula-Koch W, Nieoczym D, Stepnik K, van der Ent W, Banono NS, et al. The influence of palmatine isolated from Berberi’s sibirica radix on pentylenetetrazole-induced seizures in zebrafish. Cells. 2020; 9(5): 1233.
40. Milder PC, Zybura AS, Cummins TR, Marrs JA. Neural Activity Correlates with Behavior Effects of Anti-Seizure Drugs Efficacy Using the Zebrafish Pentylenetetrazol Seizure Model. Front Pharmacol. 2022; 13: 836573.
41. Gawel K, Kukula-Koch W, Nieoczym D, Stepnik K, van der Ent W, Banono NS, et al. The influence of palmatine isolated from Berberi’s sibirica radix on pentylenetetrazole-induced seizures in zebrafish. Cells. 2020; 9(5): 1233.
42. Kundap UP, Kumari Y, Othman I, Shaikh MF. Zebrafish as a model for epilepsy-induced cognitive dysfunction: a pharmacological, biochemical, and behavioral approach. Front Pharmacol. 2017; 8: 515.
43. Mussulini BH, Leite CE, Zenki KC, Moro L, Baggio S, Rico EP, et al. Seizures induced by pentylenetetrazole in the adult zebrafish: a detailed behavioral characterization. PLoS One. 2013; 8(1): e54515.
44. Erkec ÖE, Arihan O. Pentylenetetrazole Kindling Epilepsy Model. Epilepsi. 2015; 21(1).
45. Baraban SC, Taylor MR, Castro PA, Baier H. PTZ induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience. 2005; 131(3): 759-68.
46. Chatterjee D, Tran S, Shams S, Gerlai R. A simple method for immunohistochemical staining of zebrafish brain sections for c-fos protein expression. Zebrafish. 2015; 12(6): 414-20.
47. Aparicio SYL, Laureani Fierro ÁD, Aranda Abreu GE, Toledo Cárdenas R, García Hernández LI, Coria Ávila GA, et al. Current opinion on the use of c-fos in neuroscience. NeuroSci. 2022; 3(4): 687-702.
48. Kovács KJ. Measurement of immediate‐early gene activation‐c‐fos and beyond. J Neuroendocrinol. 2008; 20(6): 665-72.
49. Wang X, Hu Z, Zhong K. The role of brain-derived neurotrophic factor in epileptogenesis: An update. Front Pharmacol. 2021; 12: 758232.
50. AlRuwaili R, Al-Kuraishy HM, Al-Gareeb AI, Ali NH, Alexiou A, Papadakis M, et al. The Possible Role of Brain-derived Neurotrophic Factor in Epilepsy. Neurochem Res. 2023: 1-5.
51. Yogesh R. Joshi, Prabodh V. Sapkale, Pramod P. Patil. Effect of Nimodipine alone and in combination with Gabapentin against Pentylenetetrazole induced Seizures in Mice. Asian J. Pharm. Res. 2018; 8(4): 215-220.
52. Jin M, Sheng W, Han L, He Q, Ji X, Liu K. Activation of bdnf-TrkB signaling pathway-regulated brain inflammation in pentylenetetrazole-induced seizures in zebrafish. Fish Shellfish Immunol. 2018; 83: 26-36.
53. M. K. Senghani, P. M. Patel, G. Vidya Sagar. Anticonvulsant activity of boswellic acids against maximal electroshock- induced convulsive rats and picrotoxin- induced convulsive mice. Research Journal of Pharmacognosy and Phytochemistry. 2012; 4(6): 318-321.
54. Shimada T, Yamagata K. Pentylenetetrazole-induced kindling mouse model. J Vis Exp. 2018;136: e56573.
55. Wang X, Xiao A, Yang Y, Zhao Y, Wang CC, Wang Y, et al. DHA and EPA Prevent Seizure and Depression‐Like Behavior by Inhibiting Ferroptosis and Neuroinflammation via Different Mode‐of‐Actions in a Pentylenetetrazole‐Induced Kindling Model in Mice. Mol Nutr Food Res. 2022; 66(22): 2200275.
56. Costa AM, Gol M, Lucchi C, Biagini G. Antiepileptogenic effects of trilostane in the kainic acid model of temporal lobe epilepsy. Epilepsia. 2023; 64(5): 1376-89.
57. Menezes FP, Rico EP, Da Silva RS. Tolerance to seizure induced by kainic acid is produced in a specific period of zebrafish development. Prog Neuropsychopharmacol Biol Psychiatry. 2014; 55: 109-12.
58. Mussulini BH, Vizuete AF, Braga M, Moro L, Baggio S, Santos E, et al. Forebrain glutamate uptake and behavioral parameters are altered in adult zebrafish after the induction of status epilepticus by kainic acid. Neurotoxicology. 2018; 67: 305-12.
59. Heylen L, Pham DH, De Meulemeester AS, Samarut É, Skiba A, Copmans D, et al. Pericardial injection of kainic acid induces a chronic epileptic state in larval zebrafish. Front Mol Neurosci. 2021; 14: 753936.
60. Goutman JD, Calvo DJ. Studies on the mechanisms of action of picrotoxin, quercetin and pregnanolone at the GABAρ1 receptor. Br J Pharmacol. 2004;141(4): 717-26.
61. Santosh Kumar Panda, A. Venkateshwar Reddy, Mohammad Shamim Qureshi. Antiepileptogenic and Neuroprotective effects of Ziziphus jujuba leaves methanolic extract against pentylenetetrazole-induced kindling model in mice. Research J. Pharm. and Tech. 2018; 11(1): 259-266.
62. M Kannadasan, Subal Debnath, Nilesh P Babre, P Parameshwar, VV Rajesham, Habibur rehman. Anti-Epileptic Activity of the Hydro-Alcoholic Extract of Erythrina fusca Lour. Bark through Behavioral Studies against the Animal Models of Epilepsy. Research J. Pharm. and Tech. 4(2): February 2011; Page 315-319.
63. Basnet RM, Zizioli D, Taweedet S, Finazzi D, Memo M. Zebrafish larvae as a behavioral model in neuropharmacology. Biomedicines. 2019;7(1):23.
64. Hashemi P, Moloudi MR, Vahabzadeh Z, Izadpanah E. Anticonvulsant Effects of Royal Jelly in Kainic Acid-Induced Animal Model of Temporal Lobe Epilepsy Through Antioxidant Activity. Drug Res. 2021;71(3):123-130.
65. Yang X, Lin J, Peng X, Zhang Q, Zhang Y, Guo N, et al. Effects of picrotoxin on zebrafish larvae behaviors: A comparison study with PTZ. Epilepsy Behav. 2017; 70:224-231.
66. Wong K, Stewart A, Gilder T, Wu N, Frank K, Gaikwad S, et al. Modeling seizure-related behavioral and endocrine phenotypes in adult zebrafish. Brain Res. 2010; 1348:209-215.
67. Stankevicius D, Rodrigues-Costa EC, Flório JC, Palermo-Neto J. Neuroendocrine, behavioral and macrophage activity changes induced by picrotoxin effects in mice. Neuropharmacology. 2008;54(2):300-308.
68. Baxendale S, Holdsworth CJ, Meza Santoscoy PL, Harrison MR, Fox J, Parkin CA, et al. Identification of compounds with anti-convulsant properties in a zebrafish model of epileptic seizures. Dis Model Mech. 2012;5(6):773-784.
69. Sooraj Surendran, Merin Babu, Jipnomon Joseph, Uma Devi Padma. Facilitatory effect of Piperine on the Anticonvulsant effect of Sodium valproate against Pentylenetetrazole induced Seizures in mice. Research J. Pharm. and Tech 2020; 13(2):651-652.
70. Juvale II, Hassan Z, Has AT. The emerging roles of π subunit-containing GABAA receptors in different cancers. Int J Med Sci. 2021;18(16):3851-3860.
71. Scorza FA, Arida RM, Naffah-Mazzacoratti MD, Scerni DA, Calderazzo L, Cavalheiro EA. The pilocarpine model of epilepsy: what have we learned? An Acad Bras Cienc. 2009; 81:345-65.
72. Hong S, Xin Y, JiaWen W, ShuQin Z, GuiLian Z, HaiQin W, et al. The P2X7 receptor in activated microglia promotes depression- and anxiety-like behaviors in lithium-pilocarpine induced epileptic rats. Neurochem Int. 2020; 138:104773.
73. Paudel YN, Angelopoulou E, Akyuz E, Piperi C, Othman I, Shaikh MF. Role of innate immune receptor TLR4 and its endogenous ligands in epileptogenesis. Pharmacol Res. 2020; 160:105172.
74. Vezzani A. Pilocarpine-induced seizures revisited: what does the model mimic? Epilepsy Curr. 2009;9(5):146-148.
75. Vermoesen K, Serruys AS, Loyens E, Afrikanova T, Massie A, Schallier A, et al. Assessment of the convulsant liability of antidepressants using zebrafish and mouse seizure models. Epilepsy Behav. 2011;22(3):450-460.
76. Szep D, Dittrich B, Gorbe A, Szentpeteri JL, Aly N, Jin M, et al. A comparative study to optimize experimental conditions of pentylenetetrazol and pilocarpine-induced epilepsy in zebrafish larvae. PLoS One. 2023;18(7): e0288904.
77. Alfaro JM, Ripoll-Gómez J, Burgos JS. Kainate administered to adult zebrafish causes seizures similar to those in rodent models. Eur J Neurosci. 2011;33(7):1252-1255.
78. Copmans D, Siekierska A, de Witte PA. Zebrafish models of epilepsy and epileptic seizures. In: Models of Seizures and Epilepsy. 2017. p. 369-384.
79. Lin TY, Hung CY, Chiu KM, Lee MY, Lu CW, Wang SJ. Neferine, an Alkaloid from Lotus Seed Embryos, Exerts Antiseizure and Neuroprotective Effects in a Kainic Acid-Induced Seizure Model in Rats. Int J Mol Sci. 2022;23(8):4130.
80. Milder PC, Zybura AS, Cummins TR, Marrs JA. Neural Activity Correlates with Behavior Effects of Anti-Seizure Drugs Efficacy Using the Zebrafish Pentylenetetrazol Seizure Model. Front Pharmacol. 2022; 13:836573.
81. Baraban SC, Taylor MR, Castro PA, Baier H. PTZ induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience. 2005; 131:759-768.
82. Kim Y, Lee Y, Lee H, Jung MW, Lee C. Impaired avoidance learning and increased hsp70 mRNA expression in pentylenetetrazol-treated zebrafish. Anim Cells Syst. 2009; 13:275-281.
83. Goldsmith P, Golder Z, Hunt J, Berghmans S, Jones D, Stables JP, et al. GBR12909 possesses anticonvulsant activity in zebrafish and rodent models of generalized epilepsy but cardiac ion channel effects limit its clinical utility. Pharmacology. 2007; 79:250-258.
84. Alfaro JM, Ripoll-Gómez J, Burgos JS. Kainate administered to adult zebrafish causes seizures similar to those in rodent models. Eur J Neurosci. 2011; 33:1252-1255.

Recomonded Articles:

Author(s): Purnendu Panda, Banamali Das, DS Sahu, SK Meher, Das, GC Nanda.

DOI: Not Available         Access: Open Access Read More

Author(s): Ravi Kumar, Alimuddin Saifi, Parveen Kumar

DOI: 10.5958/2321-5836.2021.00004.5         Access: Open Access Read More

Author(s): Dipsundar Sahu, Shakti Bhushan, Debajyoti Das, Saroj Kumar Debnath, Laxmidhar Barik, Vandana Meena, Vikas Singh, Amit Kumar Dixit, PVV Prasad

DOI: 10.52711/2321-5836.2021.00015         Access: Open Access Read More

Author(s): Kale Rupali C, Gadgil Swati S, Borole Kanchan D, Wele Asmita A

DOI: 10.5958/2321-5836.2015.00030.0         Access: Open Access Read More

Author(s): Mule VS, Potdar VH, Jadhav SD , Disouza J I.

DOI: Not Available         Access: Open Access Read More

Author(s): Chavan G. M., Vasaikar Rupali S., Patil J. K., Hasni Sayyed Hamid, Jain Akash, Vipul H. Jain

DOI: 10.5958/2321-5836.2019.00022.3         Access: Open Access Read More

Author(s): Satya Sai Sri Narava, Sowmya Kucherlapati, Vinod Kumar Mugada, Srinivasa Rao Yarguntla

DOI: 10.52711/2321-5836.2023.00029         Access: Open Access Read More

Author(s): Emmanuel N Tufon, Ogugua Victor N, Ambeise Umenjoh M, Mbi Alice.

DOI: Not Available         Access: Open Access Read More

Author(s): Suvidha S. Mane, Lalita S. Karne, Omkar A . Devade, Laxmikant M. Purane, Vivekkumar K. Redasani

DOI: 10.52711/2321-5836.2025.00007         Access: Open Access Read More

Author(s): Pathan Muzammil Khan, Jha Asha, Pathak Swanand, Jha Rajesh, Khond Sachin, Mujawar Jahir.

DOI: 10.5958/2321-5836.2015.00002.6         Access: Open Access Read More

Author(s): Parag Jain, Anand Surana, Ravindra Pandey, Shiv Shankar Shukla.

DOI: Not Available         Access: Open Access Read More

Author(s): Sudipta Rani Bera, Suman Pattanayak, Lakshmi Kanta Kanthal, Ghalib Iqubal, Shyamal Manna, Sk Sayan Gazal, Souvik Hanra

DOI: 10.52711/2321-5836.2023.00009         Access: Open Access Read More

Author(s): Bansal Manish, Viswnadham KK, Thakur Amit K, Sanat Singh, PK. Kar, Khan QH, Shrivastav PK.

DOI: Not Available         Access: Open Access Read More

Author(s): Samruddhi Satish Vyawahare*, Dr Rajesh Mandade, Prof Pranay Uplenchwar

DOI: 10.52711/2321-5836.2023.00028         Access: Open Access Read More

Research Journal of Pharmacology and Pharmacodynamics (RJPPD) is an international, peer-reviewed journal....... Read more >>>

RNI: Not Available                     
DOI: 10.5958 2321-5836 

Journal Policies & Information




Recent Articles




Tags